1 S1 Appendix. Wavelet Transform Algorithm

2 The wavelet transform is defined as the convolution of a scaled parent wavelet function φ with
3 the analysed function g(t),

4
$$W(s,\tau) = \int g(t)\varphi_s(t-\tau)dt$$
 (F1)

5 Morlet wavelet was chosen as the mother wave, defined as

6
$$\varphi_0(t) = \pi^{-\frac{1}{4}} (e^{i2\pi f_0 t} - e^{-(2\pi f_0)^2/2}) e^{-t^2/2}$$
 (F2)

7 Where f_0 is the central frequency, t is time. The second term in the brackets is known as the

8 correction term, as it corrects for the non-zero mean of the complex sinusoid of the first term.

9 In practice it becomes negligible and can be ignored while $f_0 \gg 0$, in which case, the Morlet

10 wavelet can be written in a simpler form as [1]

11
$$\varphi_0(t) = \pi^{-\frac{1}{4}} e^{i2\pi f_0 t} e^{-t^2/2}$$
 (F3)

12 Here the scale s was defined as :

13
$$f=f_0/s=w_0/2\pi s$$
 (F4)

14 where w_0 is the reference coefficient, which equals central frequency divided by 2π . W_0 shifts 15 the balance between frequency resolution and time resolution. Therefore the wavelet function 16 based on the Morlet wavelet function can be expressed as

17
$$\varphi(t/s) = \pi^{-\frac{1}{4}} e^{iw_0 t/s} e^{-(t/s)^2/2}$$
 (F5)

18 The CWT of atime series (x_n , n=1, 2,…, N) with uniform time steps δt , is defined as the 19 convolution of x_n with the scaled and normalized wavelet, which can be described as F6-F7:

20
$$W_n(s) = \sum_{n'=0}^{N-1} x_{n'} \varphi^* [\frac{(n'-n)\delta t}{s}]$$
 (F6)

21
$$\varphi[\frac{(n'-n)\sigma t}{s}] = \left(\frac{\delta t}{s}\right)^{\frac{1}{2}} \varphi_0[\frac{(n'-n)\delta t}{s}] \quad (F7)$$

22 Where φ^* is the complex conjugate of the normalized wavelet function; n is the time-series 23 index, and δt is the sampling time. We define $A = W_n(S)W_n(S)^*$ as the wavelet power density, 24 the complex argument of $W_n(s)$ can be interpreted as the local phase.

- 25 The finite length of the signal resulted in the edge artifacts of WT. It is therefore useful to
- 26 introduce an index, Cone of Influence (COI), in which the edge effect is significant and the
- wavelet power for discontinuity at the edge drops by a factor of e^{-2} . The edge effect is $s\sqrt{2}$ for
- 28 Morlet wavelet [2,3]. The points within the edge effect area were removed prior to the
- 29 phase/coherence point extraction. COI is larger for larger w₀.

30 The cross wavelet transform

31 The cross wavelet transform (XWT) of two time series x_n and y_n is defined as

32
$$W^{XY} = W^X W^{Y*}$$
 (F8)

where * denotes complex conjugation. The complex argument of W^{XY} can be interpreted as the local relative phase shift between x_n and y_n [3–5].

35 Wavelet transform coherence

The squared wavelet coherence is defined as the squared absolute value of the smoothed cross-wavelet spectrum, normalized by the smoothed wavelet power spectrum of the two signals,

39
$$C_n^2(s) = \frac{|\langle W_n^{xy}(s) \cdot s^{-1} \rangle|^2}{\langle W_n^{xx}(s) \cdot s^{-1} \rangle \langle W_n^{yy}(s) \cdot s^{-1} \rangle}$$
(F9)

40 where W_n^{xx} and W_n^{yy} are the wavelet spectral density function; W_n^{xy} is the cross-wavelet 41 spectrum ; and the angular brackets indicate the smoothing operator. This definition of the 42 wavelet coherence corresponds with the Fourier-based coherence and maintains its value 43 between 0 and 1.

44 The smoothing operator is achieved by a convolution in time and scale.

$$S(W) = S_{scale} \left(S_{time} (W_n(S)) \right), \qquad (F10)$$

45 where Sscale implies smoothing along the wavelet scale axis and Stime means smoothing in 46 time. The time convolution is performed with a Gaussian $e^{-n^2/2s^2}$, which is the absolute value 47 of the wavelet function in each scale. The time convolution will double the edge artefact to 48 $2s\sqrt{2}$. The scale convolution is performed by a rectangular window with a length of $\sigma_{j0} \cdot s$, 49 where $\sigma_{j0} = 0.6$ is the empirical scale decorrelation length for the Morlet wavelet [6],

50
$$\langle W \rangle = \left[(c_1 w_n(s) * e^{-n^2/2s^2})_n * c_2 \prod(\delta_{j_0} s) \right]_s$$
 (F11)

c1 and c2 are the normalization factors and II is the rectangular function.

52

References

54	1.	Addison P. The Illustrated Wavelet Transform Handbook. Biomedical Instrumentation &
55		Technology. 2002. doi:10.1201/9781420033397
56	2.	Keissar K, Davrath LR, Akselrod S. Coherence analysis between respiration and heart rate
57		variability using continuous wavelet transform. Philos Trans A Math Phys Eng Sci.
58		2009;367: 1393–1406. doi:10.1098/rsta.2008.0273
59	3.	Grinsted a., Moore JC, Jevrejeva S. Application of the cross wavelet transform and
60		wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004;11: 561–
61		566. doi:10.5194/npg-11-561-2004
62	4.	Peng TPT, Rowley a. B, Ainslie PN, Poulin MJ, Payne SJ. Wavelet Phase Synchronization
63		Analysis of Cerebral Blood Flow Autoregulation. IEEE Trans Biomed Eng. 2010;57: 960–
64		968. doi:10.1109/TBME.2009.2024265
65	5.	Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ. Phase dynamics in
66		cerebral autoregulation. Am J Physiol Heart Circ Physiol. 2005;289: H2272–H2279.
67		doi:10.1152/ajpheart.01307.2004
68	6.	Torrence C, Compo GP. A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc.
69		1998;79: 61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2